gb
Galactic binary parameterization, priors and likelihood.
- class m3c2.gb.likelihood.FlatLogLik(data, GB, noise, frange, tmax, N=1, fdot_log=True, phiLR=False)[source]
Fit for N GB source parameters as the same time.
Noise is supposed to be known.
- m3c2.gb.likelihood.is_in_prior(pp, prior)[source]
prior is a npar x 2 matrix defining lower and upper bound for each param.
it could also be a npar x 3 matrix, where the last column defines if the absolute value of the corresponding parameter should be used.
- m3c2.gb.likelihood.likelihood_flat(pars, as_gb_param, Npars=8, AET_data=None, GB=None, noise=None, plotIt=False, full_output=False, noise_ampl=1)[source]
pars is Nsrc x Npars
Additional proposals which could be used for GB search.